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ABSTRACT

Prediction of Great Lakes ice cover is important for winter operations and planning activities. Current 30-
day forecasts use accumulated freezing degree-days (AFDDs) to identify similar historical events and associated
ice cover. The authors describe statistical models that relate future ice cover to current ice cover, AFDDs, and
teleconnection indices, available on the day the forecast is made. These models are evaluated through Monte
Carlo simulation and assess the potential of a perfect AFDD forecast in a regression between ice cover and
AFDDs between the forecast date (first day of month) and the date for which the forecast is made (first day of
next month).

1. Introduction

United States and Canadian federal agencies use 30-
day forecasts of ice conditions, in the form of ice charts,
as an aid in planning winter operations. The U.S. Navy–
National Oceanic and Atmospheric Administration
(NOAA) National Ice Center (NIC) issues 30-day fore-
casts of Great Lake ice conditions (http://www.natice.
noaa.gov/pub/greatplakes/) on the first and fifteenth of
every month from December through March. Thirty-
day air temperature forecasts are used to calculate ac-
cumulated freezing degree-days (AFDDs), and then da-
tabases of AFDDs and historical ice charts are used to
find analogs (Snider 1974). Empirical statistical models
are developed here to make 30-day forecasts of begin-
ning of month (BOM) lake-averaged ice cover. Separate
models are built for each Great Lake (Superior, Mich-
igan, Huron, Erie, and Ontario) and each BOM date (1
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January, 1 February, and 1 March). Predictor variables,
BOM ice cover datasets, and model types are discussed.
Monte Carlo simulations are used identify the best mod-
el for each lake each month.

2. Data

A 30-winter time series of daily lake-averaged ice con-
centration for each Great Lake is available on the Internet
(Assel 2003a). These data are used to estimate ice cover
on BOM dates of 1 January, 1 February, and 1 March
for each winter from 1973 to 2002. Predictor variables
include 1) the previous BOM lake-averaged ice cover, 2)
monthly lake-averaged AFDDs (Assel 2003b), and 3)
teleconnection indices [tropical–North American (TNH)
index, North Atlantic Oscillation (NAO) index, east At-
lantic–western Russian (EAWR) index, Southern Oscil-
lation index (SOI), and the polar–eurasian (POL) index],
obtained from the NOAA Climate Prediction Center, avail-
able online at http://www.cpc.ncep.noaa.gov/products/
MDpindex.html. Teleconnection indices have significant
correlations with annual maximum Great Lakes ice cov-
er and winter severity (Assel and Rodionov 1998; Ro-
dionov and Assel 2000; Rodionov et al. 2001). We ob-
tained monthly teleconnection data for November, De-
cember, and January from 1972 through 2002. We did
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not utilize February data since they are not available in
time to forecast BOM March ice conditions.

3. Methods

a. Forecast development

We developed four forecast models of BOM ice cover
with a 30-day lead. The first model is the climatological
model (C), which predicts the BOM ice cover as the
long-term value:

I 5 C ,m m (1)

where Im is predicted BOM ice cover, and Cm is the
long-term mean on month m. The climatological model
is the baseline technique for assessing forecast improve-
ments of other methods.

The second model is the anomaly propagation model
(AP), which predicts the BOM ice cover by preserving
the anomaly from the preceding month:

Om21I 5 C , (2)m 1 2Cm21

where Om21 and Cm21 are the previous BOM observation
and long-term climatological mean, respectively. Since
there is no reported BOM December ice cover, anomaly
propagation cannot be used for a January forecast.

The third model is the observational linear regression
model (OLR), which predicts BOM ice cover from re-
gressions on observed ice cover, AFDD, and telecon-
nection data:

I 5 b 1 b X 1 . . . 1 b X ,m 0 1 1 n n (3)

where b0 is the intercept; b1 is the regression coefficient
of the first independent variable, X1; and bn is the re-
gression coefficient of the nth independent variable, Xn.
Initially, we correlated BOM ice cover data with all
observed AFDD and teleconnection data available at
the time of forecast. For instance, we correlated BOM
February ice cover with all AFDD and teleconnection
data from December and BOM January ice cover, all of
which are available on 1 January when the BOM Feb-
ruary forecast is made. Next, we entered all variables
significantly correlated with the BOM ice cover into a
stepwise regression for selection of a model. Finally,
we tested the models to ensure that (a) the overall fit
of the regression equation is significant; (b) the indi-
vidual regression coefficients are significant; (c) there
is a linear relationship between the independent and
dependent variables; (d) there is residual normality; (e)
there is constant error variance; and (f ) the independent
variables are not significantly correlated with one an-
other.

The fourth model is the perfect AFDD linear regres-
sion model (PLR), which is mathematically similar to
the OLR model, except that X1 is the observed value of
the AFDD for the month between the forecast issue data
and the forecast date. We aim to assess how well perfect

predictions of the upcoming month’s AFDDs could im-
prove the model.

b. Forecast evaluation with Monte Carlo simulations

We broke our historical dataset (observed ice cover,
AFDD, and teleconnection indices) into a parameter-
estimation dataset (two-thirds of the total) and an eval-
uation dataset (remaining one-third). We estimated mod-
el parameters from the first dataset and error measures
from the second dataset to avoid cross-validation prob-
lems. We repeated this process 1000 times in a ‘‘Monte
Carlo’’ approach in which the data selection was ran-
domly generated. We computed model error Ei and fore-
cast skill Si for each Monte Carlo sample i:

3
E 5 abs(I 2 O ), (4)Oi m,i mT meTi

where T is the length of the total dataset, Ti is the set
of all months randomly chosen to be in Monte Carlo
simulation i, Im,i is the predicted BOM ice cover for
month m from model parameters estimated in Monte
Carlo simulation i, and Om is the observed BOM ice
cover for month m. Skill compares a model with cli-
matology (Wilks 1995):

R 2 Ei iS 5 100%, (5)i Ri

where Ri is the reference error associated with clima-
tology [computed from (4) with Im,i 5 Cm]. If Ei 5 0,
then the skill score is 100%, the maximum value. If Ei

5 Ri, then the skill score is 0%, indicating no improve-
ment over climatology. If Ei . Ri, then the skill score
is negative, and the method is worse than climatology.
If 0 , Ei , Ri, then the skill score is positive, and the
method is better than climatology. The following model
discussion and Figs. 1 and 2 use the mean model error
and mean forecast skill over the 1000 simulations.

4. Results

a. Variability in BOM conditions

On average, Lake Ontario has the lowest mean BOM
ice cover for all months, and Lake Erie has the highest
(Table 1). Lake Ontario has the lowest interannual var-
iability in BOM ice cover, as expressed by the standard
deviation; Lake Erie has the highest interannual vari-
ability for BOM ice cover for January and February,
while Lake Superior has the highest for March.

Ice cover is related to air temperature (AFDDs), wind
conditions, and heat storage capacity of the lake; high
winds can produce upwelling of warm water and break
up ice cover. The higher interannual variability in Lake
Erie BOM ice cover is related to its low heat storage
capacity (lowest lake volume, Table 1), making it most
responsive to interannual atmospheric variations. High
interannual variability in Lake Superior BOM March



AUGUST 2004 715N O T E S A N D C O R R E S P O N D E N C E

FIG. 1. Mean absolute error (MAE) (%) for prediction schemes (lower MAE indicates better
models).

FIG. 2. Mean skill score (%) for prediction schemes (higher skill scores indicate better
models).

ice cover is likely due to its northern location and to
variations in atmospheric conditions in February. Dur-
ing winters, when enough heat has been extracted from
the lake by the end of January, extensive ice formation
can occur if low air temperatures persist in February
and winds are relatively calm. Lake Ontario’s low in-
terannual variability in BOM ice cover is due to the
combination of low AFDDs; only Lake Erie has lower
AFDDs and high lake volume (Table 1), over 3 times
that of Lake Erie.

b. Forecasting BOM conditions

The climatology model performs better for lakes with
lower interannual variability. Thus, the climatology
model error is lowest for Lake Ontario and highest for
Lake Erie (Fig. 1). As noted above, atmospheric con-

ditions exert a greater influence over Lake Erie than
they do over Lake Ontario because of differences in
heat storage capacity. Since the interannual variability
increases from January to March in all lakes, model
errors also increase for all lakes except Lake Erie, where
the interannual variability is at its maximum in Feb-
ruary. As the reference model, the mean forecast skill
for the climatological model is 0 for all lakes and all
months (Fig. 2).

The BOM ice cover data begins in January, so the
AP model only applies for February and March. Ex-
cluding Lake Ontario, AP model errors are lower than
climatology in February and, in many cases, are much
lower (Fig. 1). The AP model is also better than cli-
matology in March for all lakes. The forecast skill is
larger for March than for February (Fig. 2), suggesting
ice conditions from the previous month are more im-
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TABLE 1. Great Lakes characteristics.

Superior Michigan Huron Erie Ontario

Mean depth (m)
Volume (km3)
*Latitude (8N)
**Feb ice cover (%)
**Feb ice cover std dev
**Feb AFDDs

148
12 100

47.75
29.7
22.4

588

85
4920

44.00
24.7
13.8

332

59
3540

45.50
43.7
21.1

329

19
484
42.13
57
36.6

206

86
1,640

43.50
14.1
10.5

239

* Taken from Assel and Rodionov (1998).
** February illustrates the relative relationships in these variables among the Great Lakes. These relationships remain similar for other

months.

portant for forecasting March ice conditions than they
are for forecasting February ice conditions.

The OLR model has lower errors than climatology in
14 of 15 cases (Fig. 1) and skill scores greater than 0
(Fig. 2). Of these 14 cases, 7 are improvements over
the AP model, and 5 have no AP model for comparison.
Overall, the OLR models are superior in 11 of the 15
prediction cases, the AP model is the best for 3 cases,
and the C model is best in 1 case.

For BOM January predictions, the TNH and the No-
vember NAO indices are the only significant predictors.
The November TNH statistically exerts more influence
than does the NAO. The TNH pattern affects the
strength and position of upper airflow near the Great
Lakes (Assel and Rodionov 1998). During positive TNH
phases, meridional circulation dominates, leading to
cooler temperatures and more ice cover (Rodionov and
Assel 2000). Positive phases of the November NAO are
related to lower ice covers on 1 January. Although pos-
itive phases of the NAO are linked to cooler eastern
North American temperatures, we suggest that windier
conditions may increase mixing in the Great Lakes, in-
hibiting ice cover.

For BOM February predictions, the BOM January ice
cover from each lake is the most important predictor
for all lakes, excepting Lake Ontario, where only the
December EAWR is valuable. Positive phases of the
December EAWR pattern are linked to lower ice covers
on 1 February. The December SOI is valuable in pre-
dictions of Lake Superior and Lake Huron ice cover.
Rodionov and Assel (2000) demonstrate that positive
SOI phases (El Niño) are linked to warmer winters in
the Great Lakes region, leading to reduced ice extent,
and vice versa.

Finally, for BOM March, the BOM February ice cov-
er is most important for all lakes except Lake Erie,
where the AFDDs from January are more important.
Over Lake Michigan, the January POL also is relevant.
Rodionov and Assel (2000) suggest that the POL index
is the most important teleconnection in determining
mean basinwide ice conditions; during positive POL
phases, the polar vortex is strengthened, leading to more
zonal flow over the eastern United States, which in turn
is related to warmer winter temperatures and less ice
cover.

The PLR mean model errors are much lower than for
any other model on all lakes, and skill scores are higher
(Figs. 1 and 2). Similar to the OLR models, all PLR
models are statistically significant at the 5% level and
do not violate any of the assumptions for regression
analysis. As with the other models, error is highest for
Lake Erie and lowest for Lake Ontario. For BOM Jan-
uary forecasts, only an accurate prediction of December
AFDDs is needed for all lakes, excepting Lake Mich-
igan, where the November TNH also retains value. For
BOM February, the January AFDDs are useful on all
lakes, BOM January ice cover is relevant on all lakes
except Ontario, and the December SOI remains valuable
for Lake Superior. For BOM March, only February
AFDDs and BOM February ice cover are needed for
each lake.

5. Concluding remarks

If perfect forecasts of the upcoming month’s AFDDs
were available, the forecast equations for most months
would need fewer parameters and the error would be
lower for all months. Thus, as numerical weather models
improve their accuracy of 30-day forecasts, analysts
should consider utilizing these predictions more rigor-
ously in the 30-day ice forecast.

While it is desirable to compare the 30-day forecasts
made in this paper with past NIC 30-day forecasts, such
an effort is beyond the scope of this study. Besides, NIC
30-day forecasts are not available for comparison except
for the last few winters. The NIC should archive the
30-day Great Lakes ice forecasts and 30-day air tem-
perature forecasts used for the ice forecasts for future
studies, including forecast validation and comparison
with alternative forecast methods.

The work summarized in this paper is given in greater
depth in Assel et al. (2004).
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